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A Framework for Predicting Data Breach Risk:
Leveraging Dependence to Cope With Sparsity

Zijian Fang, Maochao Xu , Shouhuai Xu , Senior Member, IEEE, and Taizhong Hu

Abstract— Data breach is a major cybersecurity problem
that has caused huge financial losses and compromised many
individuals’ privacy (e.g., social security numbers). This calls for
deeper understanding about the data breach risk. Despite the
substantial amount of attention that has been directed toward
the issue, many fundamental problems are yet to be investigated.
In this article, we initiate the study of modeling and predicting
risk in enterprise-level data breaches. This problem is challenging
because of the sparsity of breaches experienced by individual
enterprises over time, which immediately disqualifies standard
statistical models because there are not enough data to train
such models. As a first step towards tackling the problem,
we propose an innovative statistical framework to leverage the
dependence between multiple time series. In order to validate the
framework, we apply it to a dataset of enterprise-level breach
incidents. Experimental results show its effectiveness in modeling
and predicting enterprise-level breach incidents.

Index Terms— Data breach, cyber threats, cyber risk analysis,
breach prediction, sparse time series, cybersecurity data analyt-
ics.

I. INTRODUCTION

DATA breaches are devastating threats to computer sys-
tems. The Privacy Rights Clearinghouse (PRC) [1]

reports 9,015 data breaches between 2005 and 2019, account-
ing for 11,690,762,146 breached records. The Identity Theft
Resource Center and Cyber Scout [2] reports 1,244 data breach
incidents in 2018, exposing 446,515,334 records, which are
much higher (or a 126% jump) from the 197,612,748 records
exposed in 2017. The cost of data breach is also substantial.
According to NetDiligence [3], for small-to-medium enter-
prises (i.e., less than $2 billion in annual revenue), the average
breach cost from 2014 to 2018 is $178K, not including a
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$112K average crisis service cost and a $181K legal cost; for
large companies (i.e., $2 billion or more in annual revenue),
the average breach cost from 2014 to 2018 is $5.6M.

This problem is naturally studied at the enterprise level
because risk management is often conducted at the enter-
prise level to shed light on better mitigation strategies (e.g.,
designing insurance policies to mitigate the damage of data
breaches). This problem is challenging because enterprise-
level time series are very sparse. This sparsity immediately
disqualifies most, if not all, exiting statistical time-series
models and certainly deep learning-based time-series models,
simply because there are not enough data to train such models.
In this article, we make a significant first step towards the
tackling the data sparsity problem in this context.

A. Our Contributions

We make four contributions. First, we initiate the study of
modeling and predicting multivariate time series with sparse
events and propose a framework to tackle this problem.
Existing techniques cannot tackle this problem because there
are not enough data to train a statistical model for each time
series, let alone deep learning models. The research problem
is based on real data breach events abstracted in a time series.
Moreover, our framework can be easily adapted to model and
predict other types of multivariate time series with sparse
events (e.g., penetrations into networks or 0-day attacks).

Second, the novelty of our framework is the idea of leverag-
ing the statistical dependence between multivariate time series
to cope with the sparsity of events. The framework can be
characterized as follows: (i) It uses a two-part mixture struc-
ture to accommodate the excessively many zeros (i.e., event
sparsity); (ii) it uses the heavy-tail distribution to accommodate
the often-observed skewness and extreme values of breach
sizes; (iii) it uses covariates to accommodate the possible
breach-size heterogeneity between the time series; and (iv)
it uses the mixed D-vine copula structure to accommodate the
temporal dependence of multivariate time series. Intuitively,
the framework leverages the inter-enterprise relationship to
accommodate more information than what is accommodated
when considering the time series separately.

Third, we conduct a case study on modeling and predicting
enterprise-level multivariate cyber breach time series of sparse
events. By applying our framework to this dataset, we draw
a number of insights, such as: (i) Data breach sizes exhibit
large variability and large skewness (i.e., heavy tails), and
should be modeled by different distributions. Business-related
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enterprises have the largest breach sizes, perhaps because they
have many customers. Moreover, different enterprises exhibit
different breach characteristics, highlighting the importance of
modeling the temporal dependence (i.e., time effect) and the
heterogeneity between time series. In particular, enterprise-
level breach sizes exhibit a negative temporal dependence,
meaning consecutive breaches are unlikely to occur to an
individual enterprise within a short period of time, perhaps
because a breached enterprise is no longer attractive to attack-
ers or because a recently breached enterprise is likely to
strengthen its security. (ii) Business-related enterprises show
a nonlinear pattern in terms of the number (or percentage)
of enterprises that have data breaches, hinting at an attack-
defense arms race in business sectors. Medical enterprises
show an increasing (but nonlinear) pattern over time, perhaps
because their systems are more vulnerable, more desirable
targets, or have fewer consequences for unsuccessful attack-
ers. Not-for-profit enterprises (including government) show a
decreasing trend, hinting potential enhancements in their cyber
defense or decrease in desirability for attackers. (iii) The mixed
D-vine dependence structure can accommodate the complex
dependence exhibited by enterprise-level multivariate breach
incident time series. The distribution of enterprise-level breach
sizes can be well predicted by the proposed mixed D-vine
model. This sheds light on the possibility of quantitative risk
management, which we discuss as a use case later.

Fourth, in order to demonstrate the broad applicability of
our framework, we generate a synthetic dataset, which exhibits
different properties than the real-world dataset (e.g., positive
vs. negative dependence). Experimental results show that our
framework achieves satisfactory fitting/prediction accuracy.

B. Related Work

1) Prior Studies Related to the Data we Analyze: The sig-
nificant threat of data breaches calls for deeper understanding
about them. Facilitated by the availability of data (especially
[1]), there have been a number of studies on characterizing
breach incidents [4]–[13]. For example, Buckman et al. [4]
studied the time intervals between data breaches for the enter-
prises that have at least two incidents between 2010 and 2016.
They showed that the duration between two data breaches may
increase or decrease, depending on some factors. Buckman
et al. [5] investigated the effect of data breach notification
policy on data breaches. They developed a panel regressions
with fixed effects to test several hypotheses on the effect of
policies, by using the PRC data between 2005 and 2016.
Edwards et al. [6] analyzed the temporal trend of data breach
size and frequency and showed that the breach size follows a
log-normal distribution and the frequency follows a negative
binomial distribution. They further showed that the frequency
of large breaches (over 500,000 breached records) follows the
Poisson distribution, rather than the negative binomial distribu-
tion, and that the size of large breaches still follows log-normal
distribution. Eling and Loperfido [7] studied data breaches
from the perspective of actuarial modeling and pricing. They
used multidimensional scaling and goodness-of-fit tests to
analyze the distribution of data breaches. They showed that

different types of data breaches should be analyzed separately
and that breach sizes can be modeled by the skew-normal
distribution. Sun et al. [9] developed a frequency-severity
actuarial model of aggregated enterprise-level (rather than
individual enterprise) breach data to promote ratemaking and
underwriting in insurance. Ikegami and Kikuchi [12] studied
a breach dataset in Japan and developed a probabilistic model
for estimating the data breach risk. They showed that the
inter-arrival times of data breaches (for those enterprises with
multiple breaches) follow a negative binomial distribution.
Romanosky et al. [14] used a fixed effect model to estimate
the impact of data breach disclosure policy on the frequency
of identity thefts incurred by data breaches.

However, none of the preceding studies investigated the
modeling and prediction of enterprise-level time series with
sparse breach events (i.e., most enterprises have very few
data breach incidents within a significant period of time). This
naturally triggers the current research problem: Is it possible
to model and predict enterprise-level data breach incidents?

2) Prior Studies Related to the Approach we Use: The most
closely related prior study is Xu et al. [8], which studied an
aggregated cyber hacking breach incidents dataset (derived
from [1]) and showed that both incidents inter-arrival time
and breach size should be modeled by stochastic processes
rather than distributions. The time series studied in [8] is
univariate and dense (i.e., many nonzero observations). In
contrast, we study multivariate time series with sparse obser-
vations (i.e., excessively many ‘zero’ observations) because we
consider individual enterprises (rather than their aggregation).
As a consequence, the techniques developed in [8] and deep
learning-based techniques (e.g., [15]) are not applicable to our
setting because there are not enough data to train models.
A loosely related prior study is Eling and Jung [16], which
is different from ours for two reasons. (i) In terms of objec-
tive, they studied the aggregation of breached records among
companies (i.e., one aggregated observation per month) and
treating these monthly observations as sampled from a single
distribution. By contrast, we study enterprise-level breach data
(i.e., one time series per enterprise), meaning that in general
the observations are not drawn from any single distribution. (ii)
In terms of techniques, they fitted the aggregated number of
breached records (i.e., dense data) by using distributions (e.g.,
normal, gamma, and log-normal) with D-vine copula structure,
and they did not consider prediction. By contrast, we overcome
two challenges: the data sparsity that is exhibited at the
enterprise-level data; and the temporal dependence exhibited
by the data (by employing an innovative mixed model with
D-vine dependence structure). This justifies why we develop
a new framework to leverage dependence to cope with the
sparsity.

3) Prior Studies Related to the Problem we Tackle: The
present study falls into the active field of cybersecurity data
analytics (cf. [17]–[22]). Along this line, Bagchi and Udo [23]
used a variant of the Gompertz model to analyze the growth
of computer-related crimes. Zhan et al. [24] investigated
grey-box statistical models for predicting cyber attack rates,
where grey-box means that the models can accommodate the
statistical properties exhibited by the data (e.g., long-range
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dependence and extreme values). Peng et al. [25] showed that
the point-over-threshold method can model the magnitudes of
extreme attack rates. Liu et al. [26] investigated how to use a
network’s externally observable features (e.g., mismanagement
symptoms) to predict its potential data breach incidents. Sen
and Borle [27] studied the factors that have an impact on the
contextual risk of data breach.

The matter of dependence has been studied in two cyberse-
curity contexts. In theoretical cybersecurity, dependence has
been studied in [28]–[30] but it has been mostly assumed
away in other models (e.g., [31]–[35]). In cybersecurity data
analytics, dependence has been studied in the settings of
time series with dense events (rather than sparse events).
Böhme and Kataria [36] studied dependence at two levels:
using the Beta-Binomial model to describe the intra-enterprise
dependence and a one-factor latent model to describe the
inter-enterprise dependence. They also used the Archimedean
copula to model cyber risks caused by virus incidents [37].
Mukhopadhyay et al. [38] used a copula-based Bayesian Belief
network to assess cyber vulnerability. They used the normal
copula to aggregate the number of failures and losses and
compute the overall loss distribution on a cyber risk portfolio.
Xu et al. [39] used vine copulas to study the dependence
between dense time series.

C. Paper Outline

Section II reviews statistical preliminary knowledge.
Section III describes the framework. Section IV presents a
case study based on a real-world dataset. Section V presents a
case study based on a synthetic dataset. Section VI discusses
the limitations of the present study. Section VII concludes the
article with future research directions.

II. PRELIMINARIES

In order to model the dependencies within the enterprise-
level data breach time series, we propose using the copula
technique, which is an effective and popular tool for mod-
eling high-dimensional dependence [40]. Let X1, . . . , Xd be
continuous random variables with univariate marginal distrib-
utions F1, . . . , Fd , respectively. Denote their joint cumulative
distribution function (CDF) by

F(x1, . . . , xd ) = P(X1 ≤ x1, . . . , Xd ≤ xd).

A d-dimensional copula, denoted by C , is a CDF with uniform
marginals in [0, 1], namely the joint CDF of the random vector
(F1(X1), . . . , Fd (Xd )). Sklar’s theorem [40] says that when
the Fi ’s are continuous, C is unique and satisfies

F(x1, . . . , xd) = C(F1(x1), . . . , Fd (xd)).

Let c(u1, . . . , un) be the d-dimensional copula density func-
tion and fi be the marginal density function of Xi for i =
1, . . . , d . The joint density function of (X1, . . . , Xd ) is

f (x1, . . . , xd ) = c(F1(x1), . . . , Fd (xd))

d�
i=1

fi (xi).

Fig. 1. Five-dimensional D-vine dependence structure.

In this article, we will use the vine copula [40], because it
is computationally tractable (i.e., its density can be factored in
terms of bivariate linking copulas and lower-dimensional mar-
gins). A vine copula is described by a tree sequence on d ele-
ments, namely an ordered set of trees V = (Tr1, · · · , Trd−1)
where Tri = (Ni , Ei ) with node set Ni and edge set Ei for
1 ≤ i ≤ d − 1, satisfying

a) Tr1 is the first tree with node set N1 = {1, . . . , d} and
edge set E1.

b) For 2 ≤ i ≤ d − 1, edge set Ei−1 is the node set of tree
Tri .

c) (Proximity condition) For tree Tri (2 ≤ i ≤ d −1), if two
nodes in Ei−1 are connected by an edge in Ei , these two
nodes share the same node in Ei as edges in Tri−1.

In general, a d-dimensional vine copula is constructed by
mixing d(d − 1)/2 bivariate linking copulas on a tree.

D-vine is a special kind of vine copula with nodes only
connecting to their adjacent nodes [41]. Figure 1 presents
the graphical specification of a 5-dimensional (U1, · · · , U5)
D-vine in the form of a nested set of tree structures, where
U1, . . . , U5 are uniform random variables. A D-vine with five
variables has four trees Tr j , and tree Tr j has 6 − j nodes
and 5 − j edges, where 1 ≤ j ≤ 4. Each edge is associated
with a pair-copula density used for modeling dependence
between two variables, and the edge label represents the
dependence parameter in the associated pair-copula density.
In Tree 1, there are four pairs of variables, namely (U1, U2),
(U2, U3), (U3, U4) and (U4, U5); the pair-wise dependencies
are modeled by using four copulas c1,2, c2,3, c3,4, c4,5, where
ci,i+1 represents the copula density between Ui and Ui+1
with 1 ≤ i ≤ 4. In Tree 2, three conditional dependencies
are modeled: the one between U1 and U3 given U2 using
copula density c1,3|2; the one between U2 and U4 given U3
using copula density c2,4|3; and the one between U3 and
U5 given U4 using copula density c3,5|4. In Tree 3, two
conditional dependence are modeled: the one between U1 and
U4 given U2, U3 using copula density c1,4|2:3; and the one
between U2 and U5 given U3, U4 using copula density c2,5|3:4.
In Tree 4, only one conditional dependence is modeled, namely
the one between U1 and U5 given U2, U3, U4 using copula
density c1,5|2:4. As a result, the joint distribution density of a
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TABLE I

SUMMARY OF MAIN NOTATIONS USED IN THE PAPER

5-dimensional D-vine is given by

f1:5(u1, u2, u3, u4, u5)

=
5�

i=1

fi (ui )

5�
j=2

j−1�
i=1

ci, j |(i+1):( j−1)(ui , u j |ui+1, · · · , u j−1),

where fi (ui ) is marginal density and ci, j |(i+1):( j−1) is the
bivariate copula density.

In order to factor vine copulas, we need to use bivariate
linking copulas. One such copula is the Frank copula with

C(u1, u2) = −η−1 log

�
1 +

�
e−ηu1 − 1

� �
e−ηu2 − 1

�
e−η − 1

�
,

where η �= 0 is the copula parameter. The Frank copula
can capture the full range of bivariate dependence and has
a symmetric dependence structure [40].

Notations: Table I summarizes the notations used in the
article.

III. FRAMEWORK

In this section we present a framework for modeling and
predicting multivariate time series with sparse data breach
events (i.e., mostly one or two breach incidents are observed
in each time series during the lifespan of a dataset). Figure 2
illustrates the kinds of data that can be analyzed by the
framework, where n entities (e.g., enterprises) are observed
over a time horizon T at a certain resolution (e.g., year) and
each entity has very few breach incidents (e.g., only entity
2 has 2 breach incidents). In Section VI we will discuss the
other application settings of the framework.

The framework consists of 5 steps: (i) data preprocessing
and exploratory data analysis; (ii) modeling the occurrence of
breach incidents; (iii) modeling the breach sizes; (iv) modeling
and estimating dependence structures; and (v) predicting the
distributions of breach sizes.

A. Step 1: Data Preprocessing and Exploratory Data
Analysis

Given a specific breach incident dataset, the first step is
to preprocess the dataset according to the time series repre-

Fig. 2. Illustration of spare multivariate time series representation of data
breach incidents over time horizon T , where an entity (e.g., enterprise) can
be an enterprise and a red-cross represents an incident in a particular year.

sentation depicted in Figure 2, denoted by {(i, yit )|1 ≤ i ≤
n, 1 ≤ t ≤ T }, where yit is the breach size (i.e., number
of breached records) of entity i in year t , n is the number
of entities, and T is the time horizon at a certain resolution
(e.g., year). Note that yit = 0 means entity i has no data
breach during time interval t . The framework is designed to
cope with sparse multivariate time series, meaning yit = 0 for
excessively many i ’s and t’s, which cannot be described by
the existing statistical or deep learning models because there
are not enough data to train them. In order to gain initial
insights into the data, an exploratory data analysis should be
conducted on {(i, yit )}, in terms of both the breach sizes (e.g.,
their mean, median, standard deviations, and quantiles) and
the breach occurrences (e.g., breach frequency).

B. Step 2: Modeling Occurrence of Breach Incidents

In order to model sparse multivariate time series, we pro-
pose considering the random variable breach size Yit of entity
i in time interval t , meaning that yit is the observed value of
Yit . Then, we propose modeling the distribution of Yit , denoted
by Fit (y), in two parts:

Fit (y) = pit I(y = 0) + (1 − pit )Mit (y), (III.1)

where I(·) is the indicator function, pit is the probability that
entity i is not breached at time t (i.e., pit = Pr[Yit = 0]) and
Mit (y) is the distribution of Yit under condition Yit > 0. The
density function of Yit , denoted by fit , can be written as

fit (y) = pitδ(y = 0) + (1 − pit )mit (y), (III.2)

where δ(·) is the Dirac delta function, mit (·) is the density
function of random variable Mit . It is worth mentioning that
the strategy of studying pit (as a means for coping with
random variable Yit ) is reminiscent of what has happened in
theoretical cybersecurity modeling [18], [42], [43]. In those
settings, studying discrete security states would encounter
the state-space explosion problem, which leads to the use of
probability to represent that a network node is in a certain
state at a certain point in time (cf, e.g., [30], [44]–[46]).

In order to describe pit , we propose using the logit regres-
sion because it can accommodate potential temporal trends
and heterogeneities [47], as follows:

logit(pit ) = βT xi , (III.3)
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where logit(pit ) = log(pit/(1 − pit )) is the logit function
(widely used to model the odds ratio [47]) and β is a vector
of coefficients of covariates xi (for accommodating the
potential temporal trend and heterogeneity mentioned above).
The covariates can include time trend (e.g., t , t2), categorical
information (e.g., MED, BS, OTHER), and other information.

C. Step 3: Modeling Breach Sizes

Since previous studies showed that breach sizes may exhibit
skewness and heavy tails (e.g., [8]), we propose using a mixed
distribution to model them, namely using the Extreme Value
Theory [48], [49] to model the extremely large breach sizes
and using other distributions to model the other breach sizes.
A popular approach to modeling extreme values is known
as Peaks Over Threshold (POT) [48]. Given a sequence of
i.i.d. observations y1, . . . , yn , and a suitably-high threshold
μ, the excesses yi − μ can be modeled by, under certain
mild conditions, the generalized Pareto distribution (GPD).
The GPD distribution function can be written as

G(y|μ, σμ, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

�
1 + ξ

�
y − μ

σμ


�−1/ξ

+
, ξ �= 0,

1 − exp

�
−

�
y − μ

σμ



+

�
, ξ = 0,

where y+ = max(y, 0), μ is the threshold, σμ > 0 and ξ
are respectively the scale and shape parameters. If ξ < 0,
the support is μ < y < μ − σμ/ξ ; otherwise, the support
is unbounded from above. Since GPD only models the upper
tail of the distribution above threshold μ, we need to model
the breach sizes at or below the threshold μ. This prompts us
to propose the following mixed model:

Mit (y|�) =
�

(1 − φμi )Hi(y|�), y ≤ μi

(1 − φμi ) + φμi Gi (y|�), y > μi ,

where � is the parameter vector, Hi(y|�) is the distribution
of breach sizes y’s below the fitted threshold μi , φμi is the
proportion of breach sizes above the threshold μi , and Gi is
the GPD for entity i . This mixed model offers flexibility.

D. Step 4: Modeling and Estimating Dependence Structures

Having modeled the marginal distributions, the next step
is to accommodate temporal dependence between the breach
sizes, namely the dependence between Yi1, . . . , YiT . For this
purpose, we propose using the afore-reviewed copula tech-
nique. For entity i , the joint distribution of breach sizes over
the time horizon of T can be rewritten as

Fi (y) = C(Fi1(y1), · · · , FiT (yT )),

where y = (y1, . . . , yT ), Fi1, · · · , FiT are the marginals
described in Eq. (III.1), and C is the copula structure modeling
the temporal dependence across the time horizon.

In the literature, many copula structures have been proposed.
An attractive structure is the afore-reviewed vine copula, which
offers a great deal of flexibility in modeling dependence,
including various kinds of tail dependencies and asymmetric
dependencies [41]. One particularly attractive candidate is to

use the afore-reviewed D-vine copula, which offers a great deal
of flexibility in modeling pairwise dependencies. Conceptually,
D-vine copula has the following attractive properties that make
it suitable for the problem we study.

• Flexibility in dealing with high-dimensional data: Tradi-
tional multivariate copulas, such as multivariate Gaussian
and exchangeable Archimedean, lack the flexibility in
modeling dependence in high-dimensional data. By con-
trast, D-vine copula is flexible in modeling multivariate
copulas via bivariate or pair-copula constructions [40],
[50]. These constructions decompose a multivariate prob-
ability density into bivariate copulas, where each pair-
copula can have different from and be independent of the
others. That is, D-vine can flexibly model any dependence
structure that can be captured by bivariate copulas (e.g.,
asymmetric dependence or strong joint tail behavior).

• Efficiency: It is known that D-vine copula has a very
good fitting/prediction efficiency [39], [51], [52], because
the model parameters can be efficiently estimated via the
maximum likelihood estimation method [40], [50].

• Temporal structure: D-vine copula has a natural temporal
structure, which makes it particularly suitable for time
series data. As shown in Figure 1, D-vine is constructed
via a specific order of variables (i.e., path structure) [40].
This temporal structure offers the prediction capabilities,
which would not be offered by the other copula models
that cannot accommodate such temporal structures.

Since breach sizes can be positive (when there are breaches)
and zeros (when there are no breaches), the dependence
structure is in fact a mixed form, leading to the use of mixed
D-vine copula. When using the mixed D-vine copula structure
to describe the joint density of the entities’ breach sizes,
the density of entity i ’s breach sizes can be rewritten as

fi (y) =
T�

t=1

fi,t (yt )

T�
t=2

t−1�
s=1

�fi,s,t |(s+1):(t−1)(ys, yt |y(s+1):(t−1)),

where y = (y1, . . . , yT ) as mentioned above, fi,t (yt ) is as
describe in Eq. (III.2), and �fi,s,t |(s+1):(t−1)(ys, yt |y(s+1):(t−1))
is the ratio of the bivariate distribution to the product of the
marginals with respect to the conditioning set described in Eq
(III.4) shown at the bottom of the next page; see [52]–[54]
for technical details. where y(s+1):(t−1) = (ys+1, · · · , yt−1),
Cs,t;(s+1):(t−1)(u1, u2) and cs,t;(s+1):(t−1) are respectively the
distribution and density functions of a bivariate copula with
conditional distributions Fis|(s+1):(t−1) and Fit |(s+1):(t−1), 1 ≤
s < t ≤ T with s indicating year s, c j,s,t;(s+1):(t−1)(u1, u2) =
∂Cs,t;(s+1):(t−1)(u1, u2)/∂u j for j = 1, 2,

In order to model multivariate data {(i, yit )|1 ≤ i ≤ n, 1 ≤
t ≤ T }, the log-likelihood function can be rewritten as

ll(y1, . . . , yn) =
n�

i=1

T�
t=1

log fi,t (yit )

+
n�

i=1

T�
t=2

t−1�
s=1

log �fi,s,t |(s+1):(t−1)(yis , yit |yi,(s+1):(t−1)),

(III.5)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 25,2022 at 15:01:09 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: FRAMEWORK FOR PREDICTING DATA BREACH RISK: LEVERAGING DEPENDENCE TO COPE WITH SPARSITY 2191

where yk = (yk1, . . . , ykT ). In order to estimate the model
parameters, we propose using the two-stage Inference Func-
tions for Margins (IFM) approach [40]. This approach has two
steps: (i) estimate the parameters of the marginal distributions;
and (ii) estimate the dependence structures from the multivari-
ate likelihood with the marginal parameters estimated in step
(i). This approach is computationally efficient [39], [40].

Based on the D-vine structure, the tree set is Tr =
(Tr1, · · · , TrT −1). In principle, each tree can consist of various
pair-dependence structures. However, for the purpose of pre-
diction, a practical approach is to fix the dependence structure
for each tree, meaning that we use the same copula structure
within each tree but the copula structures corresponding to
different trees can vary. We propose using Algorithm 1 to
estimate the mixed D-vine dependence structure.

E. Step 5: Predicting Data Breach Risk

Since breach incidents are sparse, we propose predicting:
(i) What is the probability that enterprise i will have a breach
incident in the next time interval t + 1, namely 1 − pi,t+1?
(ii) What is the breach size, Yi,t+1, under the condition that
there will be a breach? Answering these two questions will
provide more information than point prediction (i.e., what is
the expected breach size at the next step?). In order to answer
the preceding two questions, it is sufficient to predict the
distribution of breach sizes one step ahead of time, as follows.
Given historical breach sizes yi = (yi1, · · · , yit ) for entity i ,
the conditional density of Yi,t+1|yi can be rewritten as

fi,t+1|1:t (y) = fi,t+1(y)g(y, yi), (III.6)

where 1 ≤ i ≤ n and

g(y, yi ) =
t�

s=2

�fi,s,t+1|(s+1):t(ys, y|y(s+1):t), (III.7)

Algorithm 1 Estimating the Mixed D-Vine Dependence Struc-
ture Between Breach Sizes in multivariate Time series
Input: Historical breach sizes {(i, yit )|1 ≤ i ≤ n, 1 ≤ t ≤ T };
pair copula set �.
Output: The full mixed D-vine copula structure

1: Estimate the marginal distributions described in Eq. (III.1)
and the density functions described in Eq. (III.2)

2: for j = 1, · · · , t do
3: if j = 1 then
4: For copula structure Tr j , select the copula in � that

leads to the maximum likelihood in Eq. (III.5)
5: else
6: Fix the copula structures in Tr1, . . . , Tr j−1, and select

the copula that leads to the maximum likelihood
value in Eq. (III.5)

7: end if
8: end for

Return Tr = (Tr1, · · · , Trt−1)

where �fi,s,t+1|(s+1):t is defined in Eq (III.4). We propose using
Algorithm 2 to predict the distributions of entities’ breach
sizes one-step ahead of time. Given a predicted distribution
of Yi,t+1| yi for enterprise i in time interval t + 1, one can
easily answer the preceding two motivating questions.
Metrics for evaluating the accuracy of predicted distribu-
tions. For evaluating the accuracy of predicted distribution,
most metrics (e.g., mean square error) are not competent.
Instead, we can use the following two statistical approaches:
ranked probability score and uniform test. The ranked scoring
rule provides a summary measure for evaluating probability
forecasting by assigning a numerical score based on the
predicted distribution and observations. One popular scoring

�fi,s,t |(s+1):(t−1)(ys, yt |y(s+1):(t−1))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cs,t;(s+1):(t−1)(Fis|(s+1):(t−1)(0|y(s+1):(t−1)), Fit |(s+1):(t−1)(0|y(s+1):(t−1)))

Fis|(s+1):(t−1)(0|y(s+1):(t−1))Fit |(s+1):(t−1)(0|y(s+1):(t−1))
, ys = 0, yt = 0,

c1,s,t;(s+1):(t−1)(Fis|(s+1):(t−1)(ys |y(s+1):(t−1)), Fit |(s+1):(t−1)(0|ys+1, · · · , yt−1))

Fit |(s+1):(t−1)(0|y(s+1):(t−1))
, ys > 0, yt = 0,

c2,s,t;(s+1):(t−1)(Fis|(s+1):(t−1)(0|y(s+1):(t−1)), Fit |(s+1):(t−1)(yt |y(s+1):(t−1)))

Fis|(s+1):(t−1)(0|y(s+1):(t−1))
, yt > 0, ys = 0,

cs,t;(s+1):(t−1)(Fis|(s+1):(t−1)(ys |y(s+1):(t−1)), Fit |(s+1):(t−1)(yt |y(s+1):(t−1))), yt > 0, ys > 0,

(III.4)

Fis|(s+1):(t−1)(ys |y(s+1):(t−1))

=
⎧⎨⎩

Cs,t−1;(s+1):(t−2)(Fis|(s+1):(t−2)(ys |y(s+1):(t−2)), Fi(t−1)|(s+1):(t−2)(0|y(s+1):(t−2)))

Fi(t−1)|(s+1):(t−2)(0|y(s+1):(t−2))
, yt−1 = 0,

c2,s,t−1;(s+1):(t−2)(Fis|(s+1):(t−2)(ys |y(s+1):(t−2)), Fi(t−1)|(s+1):(t−2)(yt−1|y(s+1):(t−2))), yt−1 > 0,

and

Fit |(s+1):(t−1)(yt |y(s+1):(t−1))

=
⎧⎨⎩

Ct,s+1;(s+2):(t−1)(Fit |(s+2):(t−1)(yt |y(s+2):(t−1)), Fi(s+1)|(s+2):(t−1)(0|y(s+2):(t−1)))

Fi(s+1)|(s+2):(t−1)(0|y(s+2):(t−1))
, ys+1 = 0,

c2,t,s+1;(s+2):(t−1)(Fit |(s+2):(t−1)(yt |y(s+2):(t−1)), Fi(s+1)|(s+2):(t−1)(ys+1|y(s+2):(t−1))), ys+1 > 0.
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Algorithm 2 Predicting Distributions of Breach sizes
Input: Historical data {yi }i=1,...,n where yi = (yi1, . . . , yit );
mixed D-vine structure; sample size B = 50, 000.
Output: Predicted distribution of Yi,t+1|yi .

1: for entity i = 1 to n do
2: Estimate pit according to Eq. (IV.1)
3: Randomly generate B samples from {0, 1} with

probability pit for 0 and with the number of 1’s in the
B samples denoted by Mi

4: Draw Bi samples from fi,t+1 according to Eq. (III.6)
using the rejection sampling approach [55], and denote
them by xi = (xi1, . . . , xi Mi )

5: Record the simulated vector ŷi,t+1 = (0, xi )
6: end for

Return ŷi,t+1, i = 1, . . . , n.

rule is the ranked probability score (RPS) [56], [57]:

RPS(x) =
∞�

k=0

(Pk − I(x ≤ k))2 , (III.8)

where Pk is the predicted distribution and x is the observation.
In terms of expectation, the RPS can be represented as

RPS(x) = E |X − x | − 1

2
E |X − X �|,

where X and X � are independent copies of a random variable
following the predicted distribution. Therefore, the RPS can
compare both the point forecasts and predicted distributions;
the smaller the RPS, the more accurate the prediction.

The selection of RPS can be justified as follows. Note that
we aim to conduct probability forecasts (i.e., predicting the
probability for each possible breach size), rather than point
forecasts (i.e., the expectation of a random variable). The other
reason for using probability forecasts is that the data we study
is sparse, meaning that point prediction is not informative in
capturing the inherent uncertainty. In order to quantify predic-
tion accuracy, we need to measure the distance between the
observed data and the predicted distribution. Simple accuracy
measures, such as MAE (Mean Absolute Error) or MSE (Mean
Square Error) [58], are not applicable because they cannot cap-
ture the difference between two distributions. RPS is suitable
because it generalizes MAE to accommodate distributions.
Intuitively, RPS measures the difference between the forecast
cumulative distribution function (CDF) and the empirical CDF
of observed values. RPS is a widely-used accuracy measure
dealing with probability forecasts [56], [59].

The uniform test [60] is another popular metric for assessing
the prediction accuracy. It is based on the notion of Probability
Integral Transform (PIT) and examines whether the predicted
distribution and the observations coincide. Let Fi,t+1|(1:t)(·)
be the predicted distribution of an enterprise’s breach size
at time t + 1 as discussed in Eq. (III.6). If the mixed D-
vine model is accurate, then ui,t+1 = Fi,t+1|(1:t)(yi,t+1) for
i = 1, . . . , n and is uniformly distributed, where the yi,t+1’s
are the actual breach sizes observed at time t + 1. Since the

breach sizes are mixed (i.e., many zeros and some extremely
large breach sizes), the PIT widely-used in the literature cannot
be directly applied. Therefore, we propose the following ran-
domized approach to conducting the uniform test. As shown
in Eq. (III.1), we have a probability pi,t+1 of 0’s for enterprise
i , which results in a lower bound for ui,t+1. Let vi be a
random sample from interval [0, 1]. If ui,t+1 = pi,t+1, then
the probability ui,t+1 is replaced by vi pi,t+1. The uniform
test is performed on the new randomized set of ui,t+1’s. The
goodness-of-fit statistics can be further used to assess the
uniform test.

IV. CASE STUDY WITH REAL-WORLD DATA

In this section we conduct a case study by applying the
framework to a specific breach dataset obtained from [1],
which is, to the best of our knowledge, the most comprehen-
sive source of such data. The case study focuses on enterprise-
level breach incidents in the United States, meaning that each
enterprise corresponds to an entity in the framework. This
is a natural choice because cyber risk management is often
conducted at the enterprise level.

A. Data Preprocessing and Exploratory Data Analysis

1) Dataset and Preprocessing: The dataset describes breach
incidents corresponding to n = 4, 300 enterprises between
2005 and 2018 (for a total time span of 14 years). We do
not consider the 2019 breaches because the source (i.e.,
the website [1]) appears to have stopped updating its con-
tent in 2019 (as evidenced by the extremely few nonze-
ros). The 4,300 enterprises span across 7 industries, includ-
ing: 295 businesses-financial and insurance service enter-
prises (BSF for short); 252 businesses-retail/merchant ones
including online retail (BSR for short); 355 businesses-other
ones (BSO for short); 434 educational institutions (EDU for
short); 440 government and military ones (GOV for short);
2,459 healthcare, medical provider and medical insurance
service ones (MED for short); and 65 nonprofit organizations
(NGO for short).

In the dataset, each breach incident is described by (i) the
date when the incident is reported to the website [1], rather
than when the breach takes place (which may not be known
to the enterprise in question), and (ii) the breach size defined
in the framework, namely the number of data records that are
breached in an incident. In order to structure the data into the
time series representation that is required by the framework,
we aggregate the breach incidents for each enterprise on a
yearly basis (i.e., the time horizon is T = 14 years). That is,
when enterprise i has multiple breaches reported in a single
year, we add these breach sizes together to derive yit , which
is the single virtual incident in year t . This aggregation does
not significantly “poison” the properties of the multivariate
time series because among the 4,300 enterprises, only 0.6%
have 2 breach incidents in a single year, 0.1% have 3 breach
incidents in a single year, and 0.03% have 4 or more breach
incidents in a single year. This aggregation is meant to
facilitate modeling because these multivariate time series are
already sparse (i.e., using a higher time resolution, such as
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TABLE II

STATISTICS OF LOG-TRANSFORMED BREACH SIZES OR NONZERO yit ’S,
WHERE ‘SD’ STANDS FOR STANDARD DEVIATION, Q1 AND Q3 REP-

RESENT THE FIRST AND THIRD QUANTILES

day or month, would make the time series even sparser and
much harder to model).

The framework can model the heterogeneity between the
n = 4, 300 time series {(i, yit )|1 ≤ i ≤ 4, 300, 1 ≤ t ≤ 14},
as long as some distinct information about these enterprises,
other than {(i, yit )}, is available (e.g., their cyber defense
postures or data server configurations). In order to overcome
the lack of this kind of information, we propose grouping the
4,300 enterprises into some categories such that the enterprises
in a same category may exhibit similar characteristics. This
prompts us to group enterprises according to the sectors to
which they belong. Specifically, we propose putting the three
business-related enterprises (i.e., BSF, BSR, and BSO) into a
category called BS, keeping the MED as a category because
it has a large number of enterprises already, and putting the
three not-for-profit enterprise (i.e., EDU, GOV, and NGO) into
a category called OTHER. This leads to 902 BS enterprises,
2,459 MED enterprise, 939 OTHER enterprises.

2) Exploratory Data Analysis: The sparse time series
{(i, yit )|1 ≤ i ≤ 4, 300, 1 ≤ t ≤ 14} are challenging to
analyze because yit = 0 for excessively many i ’s and t’s.
Specifically, there are on average (among the enterprises in a
category) 91.65%, 91.91% and 90.41% 0’s in the BS, MED
and OTHER categories, respectively. Nevertheless, there are
92 BS, 259 MED, and 146 OTHER enterprises that have
multiple breach incidents during the 14 years of time span.

Table II summarizes the log-transformed breach sizes (i.e.,
the nonzero yit ’s (i.e., discarding the 0’s), where the log-
scale is used because some yit ’s are extremely skewed (i.e.,
extremely large). We make the following observations. First,
the BS enterprises have the largest mean breach size and
standard deviation (SD). Second, the median is always smaller
than the mean in each enterprise category, suggesting that the
breach sizes are extremely skewed. Third, among the three
categories, BS has the smallest first quantile (Q1) and the
largest third quantile (Q3). Fourth, the MED enterprises have
the smallest mean, median, and standard deviation, suggesting
they have smaller customer populations of similar size.

In order to further expose their statistical properties, Fig-
ure 3 plots the histograms of the log-transformed nonzero
breach sizes. We again observe the skewness and variability in
each category, with extremely small and extremely large data
breach sizes in each category. The distributions of the three
categories are different, hinting at heterogeneities between
them. In summary, there are large standard deviations and
skewnesses in the breach sizes of each enterprise category

and some breach sizes are especially large. This justifies
the use of the log-transformation to reduce the variability
and skewness exhibited by the data, which is important for
modeling purposes.

Insight 1: Data breach incidents are sparse, data breach
sizes exhibit large variability and large skewness, and different
kinds of enterprises exhibit different breach characteristics.

Figure 4 presents the stacked bar plots of breach incidents
across the 14 years. We observe that different enterprise
categories exhibit different breach patterns. In the first few
years, the OTHER category has the most breaches and the
MED category has the least. The MED category exhibits a
clear increasing trend; the BS category exhibits a fluctuating
pattern; the OTHER category exhibits an increase initially
and then decreases. Overall, the MED category is the highest,
suggesting that they are more vulnerable; the OTHER category
has been improving, perhaps because they (especially the
EDU and GOV enterprises) have been investing more efforts
at cyber defense. When compared to the OTHER category,
the occurrence of breaches in the BS category becomes worse.
These observations offer the following insight:

Insight 2: When modeling the data, the temporal effect and
the inter-category heterogeneity must be addressed.

In what follows, we use the data between 2005 and 2017 to
develop statistical models and use the data in 2018 as the
out-of-sample data for assessing the prediction performance
(or accuracy). This is reasonable because the time series are
short (i.e., T = 14 years) and sparse (i.e., excessively many
0’s during the 14 years). That is, we have to use the breach
information as much as possible to build robust models.

B. Modeling Occurrence of Breach Incidents

Guided by the framework, we now move to model pit =
Pr[Yit = 0], the probability that enterprise i does not have a
breach incident in year t . For this purpose, we propose using
the logit regression because it can accommodate temporal
trends and inter-enterprise heterogeneities observed by the
data. The model, denoted by M is:

logit(pit ) = β0 + β1t + β2I(MED) + β3I(BS)

+β4t2 + β5I(MED)t + β6I(BS)t

+β7I(MED)t2 + β8I(BS)t2, (IV.1)

where BS and MED are two enterprise categories mentioned
above while the OTHER is set to be the baseline, I(·) is the
indicator function, logit(pit ) = log(pit/(1 − pit )) is the logit
function, β1 models the linear time trend, and (β2, β3) models
the category heterogeneity, β4 models the quadratic time trend,
(β5, β7) and (β6, β8) model the quadratic time trends within
a category. For comparison purposes, we also consider the
following four variants of model M:

• M1: Discard the second-order term in each category:

logit(pit ) = β0 + β1 t + β2I(MED) + β3I(BS)

+β4 t2 + β5I(MED)t + β6I(BS)t .

• M2: Discard the time-related intra-category heterogene-
ity:

logit(pit ) = β0 + β1 t + β2I(MED) + β3I(BS) + β4 t2.
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Fig. 3. Histograms of the log-transformed breach sizes in different categories, where the x-axis represents the log-transformed breach sizes.

Fig. 4. Bar charts of the breach incident frequencies, where color ‘0’ means there is no incident and color ‘1’ means there is incident.

TABLE III

ESTIMATED PARAMETERS AS WELL AS THEIR STANDARD DEVIATIONS (SD), THE LOG-LIKELIHOOD VALUE log(L) AND AIC, WHERE “∗∗” INDICATES
A p-VALUE IS LESS OR EQUAL TO 0.001 AND “∗” INDICATES A p-VALUE IS GREATER THAN 0.001 BUT LESS THAN OR EQUAL TO 0.01

• M3: Discard the nonlinear time trend:

logit(pit ) = β0 + β1 t + β2I(MED) + β3I(BS)

+β5I(MED)t + β6I(BS)t .

• M4: Discard the time-related intra-category heterogene-
ity and the nonlinear time trend:

logit(pit ) = β0 + β1 t + β2I(MED) + β3I(BS).

Table III summarizes the estimated parameters as well as
their standard deviations, the log-likelihood values and Akaike

Information Criterion (AIC [49]). Among the 5 models, M has
the smallest AIC and the largest log-likelihood value, meaning
that M is preferred. For model M, we make the following
observations. First, all of the parameters are significant at
the .01 level, except for β3. Second, β1 < 0 and β4 > 0
and the model fits well the overall nonlinear pattern observed
in Figure 4. Third, β2 > β3 > 0, which matches the pattern
observed in the initial periods of time in Figure 4. Fourth,
β5 = −.5828 and β7 = .0099 suggest that the MED category
shows an increasing nonlinear pattern, and β6 = .1483 and
β8 = −.0201 suggest that the BS category shows a decreasing
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TABLE IV

THE OBSERVED PROBABILITIES AND PREDICTED PROBABILITIES BASED
ON MODEL M

pattern first and then an increasing nonlinear pattern. These
coincide with what is shown in Figure 4.

Table IV presents the observed probabilities and the prob-
abilities predicted by Model M, as well as the derived MAE
and MSE. We observe that the predicted values and the
observed values match well, and MAE/MSE is small. Thus,
Model M has satisfactory prediction accuracy.

Insight 3: Different enterprise categories exhibit different
nonlinear patterns of breach incident occurrence. The pattern
of each category can be modelled by the logit regression with
temporal trend and intra-category heterogeneity.

C. Modeling Breach Sizes

Guided by the framework, we model the log-transformed
nonzero breach sizes via the mixed model mentioned there.
Since there are large skewness and variability (Insight 1)
and inter-category heterogeneity (Insight 3), we propose using
different mixed distributions for the three categories. For the
BS and MED categories, we propose using nonparametric
distributions to fit the breach sizes below the threshold because
of the following: (i) nonparametric distributions are data-
driven and offer flexibility in modeling skewed data; and (ii)
breach sizes in the BS and MED categories are very skewed,
meaning that parametric distributions may not be able to
capture the complex pattern exhibited by them. Specifically,
we propose using the following kernel density for the non-
parametric distribution:

h (x; y, λ) = 1

nλ

n�
i=1

K

�
y − yi

λ



, (IV.2)

where K (·) is the kernel function (i.e., a symmetric and
unimodal probability density function) and λ is the bandwidth.
More specifically, for the BS category we use the Gaussian
kernel function (a special case of (IV.2)); for the MED
category, we use the uniform kernel function (a special case of
(IV.2)) because they have better fitting performances based on
our experiments. For determining the value of λ, we propose
employing the cross-validation likelihood approach [61].

For the OTHER category, we observed that the breach sizes
are less skewed than their counterparts in the BS and MED

TABLE V

ESTIMATED PARAMETERS OF THE MIXED MODEL AND THEIR STANDARD
DEVIATIONS (SD)

categories (cf. Figure 3 and the accompanying discussion).
This prompts us to use the Gaussian distribution H (y|μG, σG )
to fit the breach sizes below the threshold, where μG and
σG are the mean and standard deviation of the Gaussian
distribution, respectively.

Table V presents the estimated parameters corresponding to
the three enterprise categories and their standard deviations.
We observe that the estimated λ,μ, σμ are very significant.
For the shape parameter, the model corresponding to the BS
enterprises has ξ = −0.342 and standard deviation 0.082,
meaning that there is an upper bound on breach size. For the
models corresponding to the MED and OTHER categories,
their shape parameters are not significant, meaning that their
tails are similar to that of the exponential distribution. For the
OTHER category, we further observe that the estimated μG

and σG are significant.
In order to further assess the fitting accuracy, Figure 5

depicts the QQ-plots of the proposed mixed models for the
BS, MED, and OTHER enterprise categories, respectively.
We observe that all of the points are very close to the
45-degree lines, meaning that the proposed mixed models have
very satisfactory fitting accuracy. For comparison purposes,
Figure 5 also depicts the QQ-plots of fittings by the log-normal
distributions. We observe that the log-normal distribution has
very poor fitting accuracy for both tails.

Insight 4: Breach sizes of different enterprise categories
should be modeled with different distributions.

D. Modeling and Estimating Dependence Structures

1) Fitting Dependence With Vine Copula: Now we study
the dependence structure between breach sizes during the first
13 years. Recall that in the D-vine structure, the tree set is
Tr = (Tr1, · · · , Tr12). Guided by the framework, we use
the same copula structure for one tree but different copula
structures for other trees, and use Algorithm 1 to estimate the
D-vine dependence structure, by setting � ={Gaussian, Frank,
Rotated Joe, Rotated Gumbel, Rotated Clayton, Gumbel, Clay-
ton}, which are widely-used bivariate copulas (noting that the
copulas that are not selected are not reviewed in Section II but
are referred to [40]).

Table VI summarizes the selected copula structures and
estimated parameters. We observe that the Frank copula is
selected for all of the trees. Frank copula is better than
the others perhaps for two reasons. (i) Frank copula can
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Fig. 5. QQ-plots of the mixed models for the three enterprise categories.

TABLE VI

ESTIMATED D-VINE COPULAS FOR BREACH SIZES (SD MEANS STAN-
DARD DEVIATION AND τ IS THE KENDALL τ )

accommodate both positive dependence and negative depen-
dence, while noting that negative dependence is exhibited
by the data analyzed. By contrast, copulas such as Gumbel
and Clayton can only accommodate positive dependence. (ii)
Frank copula has a nebulous but uniform cloud along the full

TABLE VII

FITTING RESULTS OF VARIOUS MODELS FOR THE BREACH DATA

correlation path. This makes it suitable for fitting the data that
exhibits the uniform dependence. The dependence in the data
we analyze does not concentrate at any part of the distribution
(e.g., tails), perhaps because of the data sparsity issue; rather,
the dependence exhibits the uniformity to some extent. This
makes Frank copula able to capture the dependence well.
In particular, the parameters of the Frank copula are always
negatives and significant, meaning that there is a negative
dependence across the years. This negative dependence hints
that when there were no breaches to an enterprise in the past,
a breach is anticipated to occur; when there was a breach
to an enterprise in the past, it is unlikely that another breach
will occur to the same enterprise within a short period of time.
This negative dependence may be attributed to the fact that the
attacker is not interested in breaking into the same enterprise
perhaps because there is not much new data to breach, or the
fact that the breached enterprise has fixed the vulnerability
that was exploited by the attacker. Moreover, the Kendall’s
τ shows a decreasing trend when moving from the lower
order trees to the higher order trees, meaning that there is an
even more significant negative dependence between the higher
order trees, except for Tr4 and Tr11. This suggests that higher
order dependences cannot be ignored, which is contrary to the
truncated dependence modeling in the literature [62].

Insight 5: Enterprise-level breach sizes exhibit a nega-
tive temporal dependence, meaning consecutive breaches are
unlikely to occur to a single enterprise within a short period
of time.

2) Model Comparison: Now we compare the fitting perfor-
mance of the proposed mixed D-vine model to the ones that
are commonly used in the literature [40], [47], including the
independence (or benchmark) model, the Gaussian dependence
model, and the linear mixed model. The benchmark model
assumes that there is no temporal dependence between the
yt ’s. The Gaussian dependence model uses the Gaussian
dependence structure to describe the temporal dependence.
The linear mixed model (LMM) is widely used for longitudinal
data analysis. Putting into the context of the present paper and
using the AIC criterion, we select the following linear mixed
model after checking various mixed models:

yit = β0 + ai + (β1 + bi )t + β2I(BS) + β3I(MED)

+(β4 + ci )I(BS)t + (β5 + di)I(MED)t + �it ,

where (β0, β1, β2, β3, β4, β5) represents the fixed effects and
(ai , bi , ci , di ) represents the random effects. In particular,
we allow the exchangeable dependence across the years cor-
responding to a single enterprise.

Table VII summarizes the fitting results. We observe that the
proposed mixed D-vine model leads to the smallest AIC and
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TABLE VIII

MEAN RPSS OF THE MIXED D-VINE WITH FRANK COPULA MODEL AND
OTHER MODELS, WHERE Percentage IS THE % OF THE RPSS OF THE

MIXED D-VINE MODEL THAT ARE LESS THAN THAT OF THE

OTHER MODEL(S)

Fig. 6. Histogram of predicted distribution and its uniform QQ-plot.

the largest log-likelihood value, and that LMM has the worst
fitting performance. Therefore, we conclude that the proposed
mixed D-vine model has the best fitting performance.

Insight 6: The mixed D-vine dependence structure can
accommodate the complex dependence exhibited by the
enterprise-level breach data in all of the categories.

E. Predicting Data Breach Risk

Guided by the framework, we apply Algorithm 2 to predict
the data breach risk for each enterprise i , namely the distribu-
tion of Yi,t+1|yi . In what follows, we first assess the accuracy
of the predicted distribution using the two metrics defined
in the framework and then show how to use the predicted
distribution to answer the two motivating questions.

In terms of the RPS-based evaluation of the accuracy of the
predicted distribution, Table VIII summarizes the mean RPSs
of the mixed D-vine model and other models. We observe that
the average RPS of the mixed D-vine model is the smallest
among all of the models both in each category and overall.
Since the average RPSs are small, we compute the percentage
of the RPSs of the mixed D-vine model that are less than that
of the other models. We observe that the mixed D-vine model
outperforms the benchmark model by 9.72%, the Gaussian
model by 19.58%, and the LMM model by 41.28%.

In terms of the uniform test-based evaluation on the accu-
racy of the predicted distribution, Figure 6a plots the histogram
of the distribution predicted by the mixed D-vine model,
showing an almost uniform distribution. Figure 6b depicts the
qq-plot of the predicted distribution, showing that all of the

TABLE IX

STATISTICS AND PERCENTILES, WHICH ARE DERIVED FROM THE PRE-
DICTED DISTRIBUTION OF Yi,14 , FOR THREE ENTERPRISES RANDOMLY

SELECTED FROM EACH OF THE BS, OTHER, AND MED CATE-
GORIES

points are around the 45-degree line. Thus, the mixed D-vine
model has a satisfactory prediction accuracy. The value of
the Kolmogorov–Smirnov test statistics is small (.023) with p
value .186, which is much larger than the significant level .05.
All of these evidences suggest that the predicted distribution
is satisfactory.

Insight 7: The proposed mixed D-vine model can predict
the distribution of enterprise-level data breach sizes.

Having shown that the predicted distribution of
Yi,t+1, or Yi,14 in the present case study, is accurate,
now we show how to use the predicted distribution to answer
the two motivating questions: (i) What is the probability
that enterprise i will have a breach incident in the next time
interval t + 1, namely 1 − pi,t+1? (ii) What is the breach size,
Yi,t+1, under the condition that there indeed will be a breach
incident?

Table IX presents the statistics derived from the predicted
distribution of Yi,14, where the three enterprises are randomly
selected from the three categories, respectively. Consider the
BS enterprise as an example, the probability it has a breach
in the 14th year (i.e., 2018) is 1 − 0.9492 = 0.0508; under
the condition that a breach incident indeed occurs in the 14th
year, the min breach size is 1, the maximum is 2,846,163,649,
the expected breach size is 985,792.5, the median size is
2,226.2 (i.e., the breach size is extremely skewed), the first
quantile is 223.6, the third quantile is 47,226.1, the 10th
percentile is 38.6, the standard deviation is 111,596,686 (i.e.,
the breach size has a very large variability). According to
the dataset, the fraction of enterprises having breach inci-
dent in 2018 is 0.0688 for BS enterprises (vs. the predicted
probability 0.0508), 0.0320 for the OTHER enterprises (vs.
predicted 0.0103), and 0.1240 for the MED enterprises (vs.
predicted 0.0963).
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V. APPLYING THE FRAMEWORK TO SYNTHETIC DATA

WITH POSITIVE DEPENDENCE

Recall that the real-world breach data analyzed in
Section IV exhibits negative dependence. In order to demon-
strate the broad applicability of the framework, we generate
and use a synthetic dataset with positive dependence.

A. Data Generation and Exploratory Data Analysis

1) Generating Synthetic Data: In order to generate syn-
thetic data with positive dependence, we first generate data
with a dependent uniform distribution over [0, 1], denoted by
{(i, uit )|1 ≤ i ≤ 1000, 1 ≤ t ≤ 5}, where dependence follows
the multivariate Gumbel copula [40]:

C(ui1, . . . , ui5; α) = φ−1

�
5�

t=1

φ(uit )

�
where φ(uit ) = �− log(uit )

�α
, α ≥ 1, uit ∈ [0, 1], and

φ−1(uit ) = e−u1/α
it . That is, we consider 1000 synthetic

enterprises over 5 years. We only consider 5 years because we
want to see if our framework can accommodate even shorter
time series. In our simulation, we set α = 5, which leads to
positive dependence among the uit ’s with 1 ≤ t ≤ 5. For the
marginal distribution, we use the lognormal distribution with
mean 10 and standard deviation 3. We choose the lognormal
distribution because it has the heavy-tail property and has
been used in the literature for fitting breach sizes [7]. The
inverse of the marginal distribution is applied to each ui,t ,
where i = 1, . . . , 1000 and t = 1, . . . , 5, to generate the
marginal values. To introduce sparsity into the simulated data,
we generate observation zero at time t with probability

pt = −0.02t2 + 0.125t + 0.23 + �t , (V.1)

where �t is randomly generated from a Gaussian distribution
with mean 0 and standard deviation 0.01 and t = 1, . . . , 5.
This leads to pi1 = 0.339, pi2 = 0.408, pi3 = 0.441,
pi4 = 0.438, and pi5 = 0.350, for i = 1, . . . , 1000.
The marginal values for each t are replaced with 0’s with
probability pit , where t = 1, . . . , 5. Note that we propose
using Eq. (V.1) because the real-world breach data exhibits
a quadratic pattern, as shown in β4 of Eq. (IV.1). We use
{(i, yit )|1 ≤ i ≤ 1000, 1 ≤ t ≤ 5} to represent the 5 year
synthetic breach data, where yit represents the breach size
and yit = 0 represents that there is no incident.

2) Exploratory Data Analysis: Figure 7a presents the syn-
thetic breach data, and there are respectively 338, 403, 454,
413, and 355 0’s among the 1000 enterprises over the 5 years.
We observe that the time series are denser than the real-
world dataset because we want to see whether our framework
is widely applicable. For the nonzero breach sizes, Table X
presents the summary statistics for each year, and shows that
there exist extreme large values which reflect the heavy-tail
property of the synthetic data. Note that the synthetic data is
still sparse (albeit denser than the real-world data) and heavy-
tailed (i.e., similar to those of the real-world breach data).

In what follows we use {(i, yit )|1 ≤ i ≤ 1000, 1 ≤ t ≤ 4}
as the training data to fit a model and use {(i, yit )|1 ≤ i ≤
1000, t = 5} as the test data to assess prediction accuracy.

Fig. 7. Bar chart of synthetic incident frequencies, where color ‘0’ means
there is no incident and color ‘1’ means there is incident, and QQ-plot of
mixed model for the marginals.

TABLE X

STATISTICS OF LOG-TRANSFORMED NONZERO yit ’S, WHERE ‘SD’
STANDS FOR STANDARD DEVIATION, Q1 AND Q3 REPRESENT THE

FIRST AND THIRD QUANTILES

B. Modeling Occurrence of Breach Incidents

Similar to Section IV, we use the logistic model proposed
in the framework to fit the occurrence of zeros, i.e.,

logit(pit ) = β0 + β1t + β2t2, 1 ≤ t ≤ 4. (V.2)

The estimated parameters are β̂0 = −1.255, β̂1 = 0.678,
and β̂2 = −0.112 with standard deviations 0.183, 0.165, and
0.032, respectively. Based on Eq. (V.2), we have the fitted
probabilities as p̂i1 = 0.334, p̂i2 = 0.414, p̂i3 = 0.443, and
p̂i4 = 0.417. The predicted probability based on Eq. (V.2)
for t = 5 is p̂i5 = 0.339. Thus, the fitted and predicted
probabilities are close to the true probabilities.

C. Modeling Breach Sizes

For modeling the breach size, we use the proposed mixed
model with the Gaussian kernel function as discussed in
Section IV-C. The estimated parameters are λ = 0.616, μ =
14.304, σμ = 1.559, and ξ = −0.192 with standard deviations
0.134, 0.005, 0.135, and 0.058, respectively. We observe that
all these estimates are significant at level 0.01. The proportion
of breach sizes above the threshold is φμ = 0.102. Figure 7
depicts the QQ-plot, showing that the proposed mixed model
has a very satisfactory fitting accuracy.

D. Modeling and Estimating Dependence Structures

1) Fitting Dependence With Vine Copula: Similar to
Section IV-D, We use Algorithm 1 to estimate the D-vine
dependence structure. Table XI summarizes the selected cop-
ula structures and estimated parameters. We observe that the
Gumbel copula is selected for all of the trees. This is not
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TABLE XI

ESTIMATED D-VINE COPULAS FOR BREACH SIZES (SD MEANS STAN-
DARD DEVIATION AND τ IS THE KENDALL τ )

TABLE XII

FITTING RESULTS OF VARIOUS MODELS FOR THE BREACH DATA

TABLE XIII

MEAN RPSS OF THE MIXED D-VINE WITH GUMBEL COPULA MODEL AND

OTHER MODELS, WHERE Percentage IS THE % OF THE RPSS OF THE

MIXED D-VINE MODEL WITH GUMBEL COPULA THAT ARE LESS
THAN THAT OF THE OTHER MODEL(S)

surprising as the ground-truth dependence structure is the
multivariate Gumbel copula. The parameters of the Gumbel
copula are all significant with positive Kendall τ ’s, because
the ground-truth dependence is positive.

2) Model Comparison: Similar to Section IV-D, Table XII
summarizes the fitting results. We observe that the proposed
mixed D-vine model with Gumbel copula leads to the smallest
AIC and the largest log-likelihood value, and that LMM has
the worst fitting accuracy. Thus, the proposed mixed D-vine
with Gumbel copula model has the best fitting accuracy.

E. Predicting Data Breach Risk

Similar to Section IV-E, we apply Algorithm 2 to predict
the data breach risk for t = 5. We assess the accuracy of the
predicted distribution using the same two metrics.

In terms of the RPS-based metric, Table XIII summarizes
the mean RPSs of the mixed D-vine model and the other
models. We observe that the average RPS of the mixed D-
vine model is the smallest. Since the average RPSs are small,
we compute the percentage of the RPSs of the mixed D-vine
model that are less than that of the other models. We observe
that the mixed D-vine model outperforms the benchmark
model by 100%, outperforms the Gaussian model by 1.58%,
and outperforms the LMM model by 16.8%.

In terms of the uniform test-based evaluation of the accuracy
of the predicted distribution, Figure 8a plots the histogram of
the distribution predicted by the mixed D-vine model, showing
an almost uniform distribution. Figure 8b depicts the qq-plot
of the predicted distribution, showing that all of the points
are around the 45-degree line. This means that the mixed D-
vine model has a satisfactory prediction accuracy. The value

Fig. 8. Histogram of predicted distribution and its uniform QQ-plot.

of the Kolmogorov–Smirnov test statistic is small (.024) with
a large p value .5964. All of these evidences suggest that the
predicted distribution is accurate.

VI. DISCUSSION

Use case: One use case of the predicted distribution of
enterprise i ’s breach size Yi,t+1 is the following. The enterprise
can compute the distribution of the cost that would be incurred
by a breach incident in the next time interval (e.g., year),
together with the unit price of each breached record. This
distribution of cost can be used as an input to a quantitative risk
management engine, which can decide, for example, how to
spend its cybersecurity investment (e.g., buying cyber breach
insurance vs. enhancing cyber defense).

Broader applications of the framework: Our framework is
presented in a way geared towards modeling and predicting
data breach incidents, but can be adopted in, or adapted
for, other application settings. In principle, our framework is
applicable to any multivariate time series with sparse events.
The only technical restriction or assumption that must be
satisfied in order to apply our framework is the Extreme
Value Theory. That is, if the sparse data does not exhibit the
heavy tail phenomenon, it is not necessary to use the GPD to
model the tail; in this case, other parametric or non-parametric
distributions should be used instead. Nevertheless, the heavy
tail phenomenon is often exhibited by breach data.

Limitations of the present study: This article has limitations.
First, the framework is geared towards predicting the distribu-
tion of an entity’s breach size one-step ahead of time. It does
not predict when the next breach will occur to an enterprise,
which is a challenging open problem because most enterprises
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only have one incident (i.e., most inter-arrival times between
breach incidents are truncated). Second, the dataset for the case
study does not provide enterprises’ distinct information and
may not be complete because some breach incidents may not
be reported. Nevertheless, it is, to the best of our knowledge,
the most comprehensive dataset that is publicly available and
has attracted a due amount of attention [6], [8], [63]. Third,
it is an interesting future work to investigate breach datasets
together with enterprises’ network security postures [26]. This
may identify potential correlations between these two aspects.

It is known that the breach data may be under-reported [6],
[63], meaning that our model may be biased downwards. For
instance, the large number incidents in the MED category,
when compared with the BS and OTHER categories, may be
a consequence of higher reporting rates. This is so because the
HIPAA breach notification rule requires to report every breach
containing more than 500 records [64]. Nevertheless, the PRC
data would be a reasonable resource for US breach incidents
because all 50 states have enacted legislation to require private
and governmental entities to notify individuals about secu-
rity breaches that involve personally identifiable information.
At the very least, the PRC data represents what is currently
available. When higher-quality data becomes available in the
future, our framework can be equally applied.

VII. CONCLUSION

We presented an novel framework for modeling and pre-
dicting multivariate breach incident time series with sparse
events. The key idea behind the framework is to leverage
the dependence between the multivariate time series to cope
with the event sparsity. Intuitively, this is possible because
the model can leverage the inter-entity or inter-enterprise
relationship that accommodates more information than what
is accommodated when considering the time series separately.
As a case study, we applied the framework to analyze a breach
dataset and showed that the statistical distribution of breach
sizes can be predicted with a good accuracy. This hints at
the possibility of leveraging cyber insurance to mitigate data
breach risks, which is an important topic that is little under-
stood. We hope this study will inspire many more research
activities in understanding data breaches and mitigating their
damages.
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